Classical and novel discriminant features for affect recognition from speech
نویسندگان
چکیده
This paper investigates the performance and relevance of a set of acoustic features for the task of automatic recognition of affect from speech using machine learning techniques. Eighty seven novel and classical features related to loudness, intonation, and voice quality, are examined. Using feature selection, the results yield a performance level of 49.4% recognition rate (compared to a human performance rate of 60.4% and a chance level of 20%), while the relevance results show that the more exploratory and novel subset of these features outrank the more classical features in the recognition task.
منابع مشابه
A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملClassification of emotional speech using spectral pattern features
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...
متن کاملFacial expression recognition based on Local Binary Patterns
Classical LBP such as complexity and high dimensions of feature vectors that make it necessary to apply dimension reduction processes. In this paper, we introduce an improved LBP algorithm to solve these problems that utilizes Fast PCA algorithm for reduction of vector dimensions of extracted features. In other words, proffer method (Fast PCA+LBP) is an improved LBP algorithm that is extracted ...
متن کاملAn Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition
Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...
متن کاملDimension Reduction and Discriminant Analysis for Japanese Connected Vowel Recognition
The aim of speech recognition is to extract only the linguistic information from speech signals. The acoustic variations caused by non-linguistic factors, such as speaker, communication channel and noise, pose a challenging problem for speech recognition. The same text can lead to different acoustic observations due to different speakers and different environments. To deal with these variations...
متن کامل